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Abstract

This paper proposes a new approach to object searching in video databases, SoftCBIR, which com-
bines a keypoint matching algorithm and a graduated assignment algorithm based on softassign.
Compared with previous approaches, SoftCBIR is an innovative combination of two powerful
techniques: 1) An energy minimization algorithm is applied to match two groups of keypoints
while accounting for both their similarity in descriptor space and the consistency of their geomet-
ric configuration. The algorithm computes correspondence and pose transformation between two
groups of keypoints iteratively and alternately toward an optimal result. The objective energy
function combines normalized distance errors in descriptor space and in the spatial domain. 2)
Initial individual keypoint matching relies on Approximate K-Nearest Neighbor (ANN) search.
ANN achieves much more accurate initial keypoint matching results in the descriptor space than
K-means labeling. Experiments prove the effectiveness of our approach, and demonstrate the
performance improvements rising from the combination of the two proposed techniques in the
SoftCBIR algorithm.
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1 Introduction

As digital video is becoming more prevalent in people’s life, content-based video analysis has
grown into a very active research area. Object searching is a relatively new topic [17, 13, 23, 24,
11, 12, 14, 3, 18, 20] in content-based video analysis, and consists of searching desired objects in
videos by query words or examples, according to three approaches: 1) textual only, 2) visual only,
3) textual and visual. In this paper, we have focused on the visual approach only.

Almost all researchers agree that an object can be represented by a constellation of keypoints
with a specific geometric configuration [17, 13, 23, 24, 3, 18, 20]. The mainstream approach of
object searching [17, 13, 23, 24, 20] is composed of three steps: detecting keypoints, computing
descriptors, and matching. In the first step, keypoints are detected and located with specific
position, scale and orientation. The second step computes descriptors at keypoint locations.
The third step matches keypoints by their descriptors. The matching between two keypoints is
evaluated by the distance between their descriptors in the descriptor vector space. An object is
represented by a local group of keypoints. To match two objects, their groups of keypoints are
matched based on certain criteria, including not only the matching between individual keypoints,
but also some measures based on comparisons of the geometric configurations between the two
groups. For the above three steps, researchers have some agreement about the first step and the
third step. For the first step, typically, keypoints are detected at extrema positions in a scale-
space. For the third step, typically, people enforce either neighborhood consistency or geometric
consistency between the two objects. (Authors have used the term spatial consistency to express
the concept of neighborhood consistency, but we avoid it as this seems confusing when examined
at the same time as geometric consistency.) Neighborhood consistency enforces the fact that a
group of neighbor keypoints in one object should be mapped into a group of neighbor keypoints
in the other object [23]. Geometric consistency assumes there exists a planar affine transform
or homography between the points of the two objects. Geometric consistency is stronger than
neighborhood consistency, but more complicated to compute. On the other hand, for step 2, the
reported methods are very diverse. In 2004, Mikolajczyk and Schmid [19] presented a comparative
study of the available local descriptors: Harris-Affine detector [8], shape context [2], steerable
filters [4], differential invariants [15], spin images [16], complex filters [22], moment invariant
[7], SIFT [17], PCA-SIFT [13], and cross-correlation of different types of keypoints. That work
concludes that SIFT performs best in the comparison experiments. However, the performance
of PCA-SIFT is not far behind. In addition, its acronym is somewhat a misnomer in the sense
that it does not use the histograms of gradient directions in subregions around interest points
that define the SIFT approach. Instead, the feature vector is obtained by PCA analysis of the
raw vectors of gradient values around interest points. Furthermore, the PCA step results in much
smaller feature vectors (typically 20 dimensions instead of 128 dimensions).

Sivic and Zisserman proposed several video mining approaches, including Video Google [23] in
2003 and a related approach [24] in 2004. They use Lowe’s keypoint detector and SIFT descriptor
[17], and had some success in extracting objects in videos. But there are three shortcomings in
their work. 1) In [23] and [24], for matching between groups of keypoints, the authors argue that
computing the parameters of the planar homography between the two groups using iterations is
time-consuming, and they adopt a simpler testing criterion, computing the number of matched
individual keypoint pairs between the two groups after neighborhood consistency filtering. If
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this number is above a certain threshold, the two groups are thought to be matched. Geometric
consistency between groups is not considered. This simplification will produce false object matches
under certain circumstances. 2) In [23] and [24], the authors use K-means clustering to perform
a vector quantization on the set of keypoint descriptors extracted from the keyframes of videos
in the database. The number of clusters K is set manually. K-means clusters are given unique
labels, and each keypoint is given the label of the cluster it belongs to. In the matching, keypoints
with identical labels are matched. There are two problems in this method. First, the K-means
algorithm is not very suitable for vector quantization in large and high-dimensional data sets, due
to its two inherent drawbacks: dependency on the initial state and degeneracy [25]. The initial
state includes the selection of initial centers and the value of K. K-means is non-deterministic,
thus final results depend upon the initial state, because the mean squared error often converges
to a local minimum [10]. But the local minimum cannot guarantee an ideal Voronoi graph-like
vector quantization result. Instead, the K clusters in the K-means result may be elongated in the
high-dimensional space. Additionally, the value of K is also critical to the clustering result, and
obtaining an optimal K for a given data set is an NP -hard problem [25]. When the distribution
of the data set is unknown, the optimal K is hard to attain. A manually assigned value of K
may not be suitable for the data, falsely splitting one good cluster into two, or missing some
obvious splits, or both. The risk of degeneracy implies that the clustering may end with some
meaningless sparse clusters. Second, K-means is not very suitable for object searching. There
may be a lot of keypoints lying around the borders between clusters, because K-means does not
account for point density. Thus, it does not hold that two keypoints assigned the same labels
are among the closest neighbors in the descriptor vector space. This fact will cause errors in a
matching algorithm based on K-means results. 3) They use “raw” SIFT descriptors, which are
128-dimensional vectors. Considering that there are hundreds or thousands of keypoints in a single
ordinary video frame, the distance computation between SIFT descriptors in the 128-dimensional
vector space for thousands of frames is overwhelming. Such a high-dimensional descriptor is
impractical for a usable video analysis system, which requires near real-time response to users’
interactions.

In this paper, we describe a new approach to object searching in videos called SoftCBIR that
addresses the above three problems. It combines two innovative components. (1) An energy
minimization framework is proposed to update the pose transformation and correspondence al-
ternately and iteratively. We accomplish this by extending the ideas of softassign [6]. Softassign
is a probabilistic framework that lets all the available data participate in the updates of the pose
transformation and correspondence. So it is less vulnerable to the selection of the initial state than
the incremental method of [20]. The energy minimization combines the use of keypoint matching
and softassign to evaluate the matching between two groups of keypoints, by evaluating the sim-
ilarity in keypoint descriptor vector space and the geometric consistency between two groups of
keypoints simultaneously. The iteration gives an optimal result for both correspondence and pose
transformation. (2) We use Approximate K-Nearest Neighbor (ANN) [1] to perform the initial
individual keypoint matching in the descriptor vector space instead of the K-means used by [23]
and [24]. ANN searching is much more accurate than searching by K-means labeling. Although
näıve nearest neighbor would be very time-consuming, ANN uses a balanced box-decomposition
(BBD) tree, which is efficient to build and search. It also provides a parameter to adapt the
tradeoff between accuracy and efficiency. Evaluation shows that it can achieve both fairly high
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accuracy and efficiency [1]. The SoftCBIR algorithm is the novel combination of these two com-
ponents. In addition, since it uses PCA-SIFT, it handles feature vectors with more manageable
numbers of dimensions.

The rest of the paper is organized as follows: Section 2 gives an overview of our system. Sections
3 and 4 present details about the energy minimization algorithm and ANN. Section 5 shows results
of experiments and evaluations. Conclusions and future work are addressed in Section 6.

2 Overview

In a preprocessing stage, one keyframe is extracted for each shot in the video database, and
keypoints (including their x-position, y-position, scale and orientation) and their descriptors are
extracted using the PCA-SIFT approach for each keyframe. Then a BBD tree is built using
the whole set of descriptors for all the videos. Below is an outline of the process for our object
searching approach once the user opens a query image and draws a rectangle to define a query
object.

1. Extract the keypoints and their descriptors in the user’s query rectangle.

2. For each keypoint in the query rectangle, search its K nearest neighbor keypoints as matched
keypoints with ANN using the BBD tree built in the preprocessing stage. In our experiments,
K is set to 14 in ANN.

3. Perform the energy minimization algorithm for each keyframe containing a subset of the
matched keypoints obtained by ANN.

4. For each keyframe, define a matching score equal to the number of final matched keypoints
after the energy minimization algorithm, and determine a rectangle framing all matched
keypoints as the matched object area.

5. Rank the keyframes in the database according to their matching scores.

6. Submit ranked results: the user can choose to view top-ranked keyframes.

3 Energy minimization

Graduated assignment is an iterative registration algorithm that in particular is used to register
two sets of 2D points in medical images [6]. For two groups of points in 2D or 3D space, it
computes the correspondence and pose transformation iteratively and simultaneously, using a fast
deterministic annealing mechanism. The objective is to minimize an energy function, which is a
sum of distance errors between pairs of matched keypoints in the spatial domain. In our object
searching framework, after achieving an initial individual matching of keypoints, it is necessary to
check the geometric consistency between the two groups of keypoints because of the following two
reasons: 1) Some individual matchings of keypoints are wrong. 2) Correct individual matching
of keypoints cannot guarantee that the two groups of keypoints are matched when they exhibit
similar geometric configurations. This geometric consistency problem is more complex than the
purely spatial matching problem that the original softassign algorithm was meant to solve. Indeed
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we should consider not only the distance error in the spatial domain, but also the distance error in
the descriptor vector space of keypoints. In the energy minimization of our SoftCBIR algorithm,
we combine these two distances into a new energy function and apply deterministic annealing
iterations similar to those of softassign to find video frames containing groups of keypoints that
match the keypoints of query rectangles with similar individual descriptors and similar geometric
configurations.

Consider a query image and a test video frame. The query image has a list of J keypoints
p

(1)
j = (x

(1)
j , y

(1)
j ) with descriptors d

(1)
j in the descriptor space. The test video frame has a list of

k keypoints p
(2)
k = (x

(2)
k , y

(2)
k ) with descriptors d

(2)
k in the descriptor space.

We use a correspondence matrix M to indicate the correspondence between the J keypoints in
the query image and the K keypoints in the test video frame. Mjk indicates the probability of

correspondence between p
(1)
j and p

(2)
k . The matrix M is a (J + 1) × (K + 1) matrix because an

additional slack row and an additional slack column are needed to indicate when no acceptable
correspondence has been found for a keypoint in the query image or in the test frame respectively.
At each step of iteration, the Sinkhorn algorithm, an iterative normalization of rows and columns,
is applied to M to insure that each row and each column sum up to one.

We look for an affine transform A from the group of keypoints in the query image to the group
of keypoints in the test frame, defined as

A =

⎡
⎢⎣

a1 a2 a3

b1 b2 b3

0 0 1

⎤
⎥⎦ (1)

Thus the point A p
(1)
j is the corresponding spatial position for p

(1)
j after the affine transform.

The objective energy function E is then defined as

E =
J∑

j=1

K∑
k=1

Mjk(
D2

s(A p
(1)
j , p

(2)
k )

αs
+

D2
d(d

(1)
j , d

(2)
k )

αd
) (2)

where Ds(·, ·) is the Euclidean distance function in the spatial domain and Dd(·, ·) is the Euclidean
distance function in the descriptor vector space, and αs and αd are normalization parameters for
the two distances.

The energy minimization used by SoftCBIR is a deterministic annealing procedure in which
a temperature T = 1/β is initially high so that small local minima are first smoothed out at
the expense of accuracy and is progressively decreased so that, once a large minimum is found,
landscape details are provided for increased accuracy. At each temperature level, the first step
is to update M using the current squared spatial distance errors D2

s(A p
(1)
j , p

(2)
k ) and squared

descriptor distances D2
d(d

(1)
j , d

(2)
k ). The second step is to update the affine transformation A by

solving in closed form for the affine transform parameters that set the derivative ∂E/∂A = 0,
thereby minimizing the energy. The code of this component of our SoftCBIR algorithm can be
summarized as follows:

Inputs:
1. For the query image, a list of J keypoints p

(1)
j = (x

(1)
j , y

(1)
j ) with descriptors d

(1)
j in the

descriptor space.

5



2. For the test video frame, a list of K keypoints p
(2)
j = (x

(2)
j , y

(2)
j ) with descriptors d

(2)
k in the

descriptor space.
Initialize slack elements of assignment matrix M to γ = 1/(max{J, K} + 1), β to β0.
Initialize A to an expected pose transformation (see below for details).
Do A until β > βfinal or E < E threshold (deterministic annealing loop)

- Compute combined squared distances D2
jk = D2

s(Ap
(1)
j , p

(2)
k )/αs + D2

d(d
(1)
j , d

(2)
k )/αd

- Update Mjk = γe−βD2
jk

- Do B until ΔM small (Sinkhorn algorithm)

Update Matrix M by normalizing each row except slack row: Mjk = Mjk/
K+1∑
k=1

Mjk

Update Matrix M by normalizing each column except slack column: Mjk = Mjk/
J+1∑
j=1

Mjk

- End Do B

- Compute energy E =
J∑

j=1

K∑
k=1

Mjk(D
2
jk)

- Update A by minimizing the energy E, i.e., solve the equation ∂E/∂A = 0 with the
parameters of A as variables (see below for details)

- β = βupdateβ
End Do A
Outputs: Affine matrix A and correspondence matrix M between the groups of keypoints in

query image and test video frame.

In other words, the energy minimization in SoftCBIR produces a high probability of correspon-
dence between pairs of keypoints that are close in descriptor space and also in the spatial domain
after affine transformation, thanks to the Gaussian relationship between distance and correspon-
dence of the update step Mjk = γe−βD2

jk . Note the multiplying term β, which is the inverse of the
temperature. In the first iterations, β is small, so that the algorithm does not pay much attention
to distances, and probabilities tend to be equally distributed between several possible pairings
between keypoints. It is only after several iterations, when the affine transformation becomes
more correctly calculated, that the parameter β becomes large enough and the algorithm starts
to fully account for the distances between points, which in turn improves the affine transform
calculation. In our experiments, we use β0 = 1.2, βupdate = 1.05, and βfinal = 10. Loop B within
loop A enforces normalization to one for the probabilities of each row and each column. The
combined result of normalization and exponentiation of distances is a winner-take-all mechanism
in which one term in each row and each column tends to grow closer to one at the expense of the
other terms. If the combined distances between a transformed keypoint and all the keypoints of
its row remains large, then the winner becomes the extra term of the slack column, therefore a
large value in the slack column indicates that no match was found for a keypoint of the query
image. Similarly, elements of the slack row are large when keypoints of a video frame do not
correspond to any keypoints of the query image.

At each step, the parameters of the affine transformation A that minimize the energy can be
found in closed form by solving the two 3 × 3 systems:
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b3

⎤
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
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2Mj,kx
(1)
j y
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j y

(2)
k

αs

∑
j,k

2Mj,ky
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(4)

After the energy minimization stage, we transform the correspondence matrix M , which ex-
presses probabilities of correspondences between keypoints of the query image and the test video
frame, into a hard assignment matrix with only zeros and ones: if Mjk is the unique maximum in
both the jth row and the kth column and Mjk is larger than a threshold θ = 0.9, then Mjk is set

to one, and if this term is not in a slack row or column, the keypoint p
(1)
j and p

(2)
k are considered

to be matched keypoints.
At this stage we adopt the number of surviving matched keypoints as the matching score. The

frames are ranked by their matching score and the ranked list is delivered as the object searching
result.

The deterministic annealing algorithm is slow if the affine matrix A is initialized with random
values. To speed up the convergence of the algorithm, we estimate an initial affine matrix A using
the initial matched keypoints provided by ANN. The routine for producing this initial value for
A is similar to one run of the loop A in the pseudocode, in which M is computed using only

distances in the descriptor space, i.e. as Mjk = γe−β D2
d(d

(1)
j ,d

(2)
k

)/αd .
In Section 2, we explained that the K used for ANN is 14. For each keypoint inside the query

rectangle of the query image, we find its 14 nearest neighbors in the keypoint descriptor space
among all the keypoints in all the keyframes in the database. So in each test frame, for each
query keypoint, we may find several matched keypoints. In other words, in the initialization
stage of SoftCBIR algorithm, there can be one-to-many or many-to-one matches. But after the
energy minimization, the thresholding of the correspondence matrix into a hard assignment matrix
guarantees one-one matches. Fig. 1 illustrates this mechanism.

4 ANN

ANN search is used to generate candidate matches as inputs to the energy minimization algorithm.
As mentioned, K-means has inherent drawbacks for keypoint matching. Nearest neighbor (NN)
search is better suited for this task. Given a set S of n data points in a d-dimension feature space
F , the goal of NN searching is to find the data points in S closest to a given query point q in F .
But the brute-force search requires O(dn) time, which is unacceptable in many practical problems.
A K-d tree can be used to address the NN problem efficiently [5] and find K nearest neighbors
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Query image Result frame Query image Result frame
(a) (b)

Figure 1: A diagram example of matched keypoints before energy minimization (a) and after it
(b). In (a), identical numbers indicate they are nearest neighbors found by ANN. In (b) identical
numbers indicate they belong to matched pairs.

in logarithmic time. But in fact, it is logarithmic only for fairly restricted input distributions in
low-dimensional space. For certain inputs or in high-dimensional space, the K-d tree search can
be linear in time. In light of these difficulties, an alternative approach is to find the approximate
nearest neighbors (ANN) [1], which is formulated as: given a set S of n data points and a query
point q in a d-dimension feature space F , find a p in S such that p is a (1+ε)-approximate nearest
neighbor of q.

dist(p, q) ≤ (1 + ε)dist(p∗, q). (5)

where p∗ is the true nearest neighbor to q. Arya et al. [1] show that in O(d n logn) time it
is possible to construct a data structure of size O(d n) such that an ANN p can be reported
in O(cd,ε log n) time for a constant cd,ε ≤ d �1 + 6d/ε�d and any Minkowski metric. The data
structure used in [1] is a balanced box-decomposition (BBD) tree that hierarchally decomposes
the n data points into a collection of cells, each of which is either a d-dimensional rectangle or a
set-theoretic difference of two rectangles, one enclosed within the other. In our system, we build
a BBD tree to store the whole set of keypoints obtained from all the frames of the videos. In
ANN, we use ε = 0.1 to increase speed without adversely reducing accuracy. The K in ANN is an
adjustible parameter of our system. It is easily adjustable by users to get suitable for a database
they have. Generally, the more smilar images in the database, the larger K should be.

5 Experiments and Evaluation

5.1 Data

We use ABC news videos provided by TRECVID 2004 [9] as our training data and testing data.
Using the ground truth of shot boundaries provided by TRECVID 2004, we extract one keyframe
(the middle frame) for each given shot, and extract their keypoints and PCA-SIFT descriptors.
Table 1 describes the training set and testing set. A BBD tree is built using all these PCA-SIFT
descriptors. Both the training set and the testing set contain not only news but also commercials.

The evaluation of our framework is conducted at the object level. Ground truth objects were
manually labeled and framed with rectangles by five students working independently. These
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Table 1: Training set and Testing set
Training set Testing set

“19981210 ABCa.mpg” “19981004 ABCa.mpg”
Files “19981221 ABCa.mpg” “19981021 ABCa.mpg”

“19981109 ABCa.mpg”
“19981126 ABCa.mpg”

Length 56 minutes and 47 seconds 1 hour 53 minutes and 40 seconds
Number of keyframes 844 1,735
Number of keypoints 391,213 818,997

objects have diverse semantics, including human faces, superimposed texts, logos, buildings, ani-
mation figures, banners, computers, maps, ties, etc. Only those objects that occurred in at least
two different keyframes were labeled. The resulting total number of labeled objects is 222. The
number of occurrences of objects varies from 2 to 32.

5.2 Method

In the evaluation of our object searching approach, we use all the instances of all the objects
labeled in the ground truth as queries in turn. Results are delivered as ranked frame lists, along
with rectangles indicating the detected matching object area. For each query, the query frame
itself is automatically filtered out of the result list. For each result frame, if the detected object
area overlaps an instance of the current query object, it is counted as a correct result; otherwise
a false positive is reported.

5.3 Results

We present our results with three methods, (1) Mean Precision Recall Curve, (2) Mean R-Precision
and (3) Mean Average Precision over all objects [21]. To analyze the contributions of the energy
minimization algorithm and ANN to our SoftCBIR approach, we perform the following three
experiments: (1) with energy minimization and ANN (our proposed approach), (2) with ANN
and without energy minimization algorithm, (3) with energy minimization algorithm and without
ANN (using K-means instead). Fig. 2 illustrates the comparison between the three results with
the mean precision recall curves. In Fig. 2, the solid curve is for (1), the dashed curve is for (2),
and the dotted curve is for (3). It is clear that our approach combining both energy minimization
and ANN outperforms the other two by a large margin. Table 2 tabulates the detailed values on
the curve of our approach. Table 3 compares the Mean R-Precisions and Mean Average Precision
of the three experimental results. For general purpose object searching in a large-scale video
database, the results of our approach are encouraging. In this experiment, the K for K-means is
chosen as 11700 because this value yields the highest results.

Fig. 3 to Fig. 6 show some examples of valid frames returned by SoftCBIR. The results in
Fig. 3, 4 and 6 are perfect, in the sense that all the relevant frames listed in ground truth are
delivered at the top of the ranking. Fig. 5 shows two false positives - Result 11 and Result 12.
Fig. 7 shows four queried objects that failed to return any correct results. From Fig. 7 we can
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Figure 2: Comparison between approaches in Mean Precision Recall Curve

Table 2: Points on Mean Precision Recall Curve of our approach
Recall 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Precision 1.00 0.95 0.91 0.86 0.82 0.78 0.74 0.71 0.68 0.65 0.62

Recall 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Precision 0.60 0.57 0.55 0.52 0.50 0.48 0.45 0.43 0.40 0.38

see that our approach does not work well for the following types of objects: 1) Objects with no
or few keypoints because of characteristics of the object such as blur, low resolution or shading,
for example in (a)-(c). 2) Objects with perspective change beyond 30 degrees, for example, (c).
3) Objects with too high-level semantic meaning, for example, (d).

5.4 Speed

We tested the system speed using all the instances of all the objects in the ground truth as
queries in turn. For each such query, we search it in the whole testing set containing 1735 images.
On a computer with Pentium 4 CPU 2.4GHz and 1GB RAM, the average running time of one
object searching task is 28.71 seconds, the minimum time is less than 3 second, and the maximum
time is 170 seconds. With the same hardware conditions, if David Lowe’s raw SIFT descriptor
are used, the average running time of one object-searching task is 45 hours. This is very slow
because of the constant cd,ε ≤ d �1 + 6d/ε�d in Section 4, which increases exponentially with d

Table 3: Comparison in Mean R-Precision and Mean Average Precision
Mean R-Precision Mean Average Precision

With energy minimization and ANN 0.478 0.505
With ANN, without energy minimization 0.411 0.452
With energy minimization, without ANN 0.206 0.242
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Query Result 1 Result 2 Result 3 Result 4 Result 5

Result 6 Result 7 Result 8 Result 9 Result 10 Result 11

Result 12 Result 13 Result 14 Result 15 Result 16 Result 17

Result 18

Figure 3: Search results for the object “Carole Simpson”

Query Result 1 Result 2 Result 3 Result 4 Result 5

Result 6 Result 7 Result 8 Result 9 Result 10 Result 11

Result 12

Figure 4: Search results for the object “CIA seal”

Query Result 1 Result 2 Result 3 Result 4 Result 5

Result 6 Result 7 Result 8 Result 9 Result 10 Result 11

Result 12 Result 13

Figure 5: Search results for the object “ABCNEWS logo”
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Query Result 1 Result 2 Result 3 Result 4 Result 5

Result 6 Result 7 Result 8

Figure 6: Search results for the object “Superimposed text in Aetna advertisement”

(a) (b)

(c) (d)

Figure 7: Unsuitable objects

(the dimension of descriptors). This comparison proves the advantage of using the smaller number
of feature dimensions provided by PCA-SIFT in combination with efficient K-NN in real-world
applications.

6 Conclusions and future work

In this paper, we proposed a new keypoint based object searching approach called SoftCBIR.
Our main contributions include developing the energy minimization algorithm to enforce optimal
geometric consistency and descriptor matching between two groups of keypoints, and using the
Approximate Nearest Neighbor (ANN) for the keypoint matching instead of K-means. Experi-
ments on ABC news videos with 1,735 keyframes in the testing set prove the effectiveness of our
approach. We also pointed out object types that are not suitable for our approach.

In future work, we will explore the following directions: 1) Expand the current data set to a
larger subset of the TRECVID videos, 2) Try to improve keypoint detection and representation, to
increase robustness to 3D projection and non-rigid transformations, and 3) Provide mechanisms
to bridge the gap between the text queries of TRECVID and the image queries of SoftCBIR, for
example by using internet search to provide images that best illustrate the concepts of the text
queries.

7 Appendix 1

We also developed a heuristic approach to check the neighborhood consistency and geometry
consistency. This approach is faster than the energy minimization method. Its drawback is
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that it assumes that the scale changes between the query region and the candidate regions are
not large. This heuristic approach includes a neighborhood consistency filter and a geometry
consistency filter.

7.1 Neighborhood consistency filter

For object matching, only those matched keypoint pairs with enough supports from their neigh-
borhoods are reliable. Therefore two filters are employed to check neighborhood consistency, one
for filtering out neighborhood outliers and one for filtering out key points that do not satisfy the
local mapping constraints. With these two filters, we effectively filter out false alarms or give them
low scores for the ranking, and refine the scores and object locations for the remaining correct
results.

7.1.1 Filtering out neighborhood outliers

Among the matched keypoints, a neighborhood outlier in the result image is unreliable. Although
the KNN based PCA-SIFT matching is generally good, there are still errors in individual keypoint
pairings. Some of these pairings lie in the result image by themselves without supporting neighbor
pairings, thus should be filtered out. Fig. 8 and Fig. 9 show such an example. Fig. 8 and Fig.
9 are results of object searching in a key frame database (including 440 keyframes) from a video
in TRECVID 2004. In Fig. 8, (a) is the query image with the logo of a detergent brand as the
query object. The top seven ranked object searching results without neighborhood consistency
filtering are shown from (b) to (h). The rectangles locate the detected object and white points
indicate matched keypoints positions. Fig. 8 also shows their scores. It is easy to see that only
(b) and (h) are correct results, and others are false alarms. Even in (b) and (h), the detected
object regions are too large compared to the true object. Fig. 9 shows the top four ranked results
after filtering out neighborhood outliers. Here the first two results are the correct ones. The score
of the third result is much lower than those of the first two results. Furthermore the detected
object regions in Fig. 9 (a) and (b) are much better than those in Fig. 8 (b) and (h).

(a) Query image (b) Score: 61 (c) Score: 51 (d) Score: 50

(e) Score: 44 (f) Score: 37 (g) Score: 35 (h) Score: 34

Figure 8: Object search example for criteria without neighborhood consistency filter
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(a) Score: 52 (b) Score: 30 (c) Score: 16 (d) Score: 6

Figure 9: Object search example for criteria with filtering out of neighborhood outliers

We now turn to describing the algorithm in detail. Suppose the set of matched keypoints is S
in a result image. For a keypoint (x, y) in S, we compute the local density of matched keypoints
in the image plane around (x, y) using (6). If the density is less than a threshold, keypoint (x, y)
is removed from the matched keypoint set.

density(x, y) = e
− 1

n

n∑
i=1

√
(xi−x)2+(yi−y)2

(6)

where (x1, y1), ..., (xn, yn) are the closest n keypoints to (x, y) in S with 2D Euclidean distance,
with n being an adjustable system parameter. In our current system, n=2.

7.1.2 Examining local mapping

Filtering out neighborhood outliers is the first step of neighborhood consistency filtering. After
removing neighborhood outliers, there may still be matches between keypoint pairs which do not
satisfy neighborhood consistency. For each matched keypoint pair, we examine the local mapping
around them in their respective neighborhoods. If there are no enough support pairings from their
neighborhoods for their matching, this pair will be filtered out. Fig. 10 and Fig. 11 show such
an example.

(a) Query image (b) Image 24 (c) Image 46

(d) Result 1, Image 46, score: 478 (e) Result 2, Image 24, score: 310

Figure 10: Object search example without examining local mapping

Fig. 10 and Fig. 11 are also results of object searching in the same keyframe database as
Fig. 8 and Fig. 9. In Fig. 10, (a) is the query image with as query object the title of The New
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(a) Result 1, Image 24, score: 212 (b) Result 2, Image 46, score: 95

Figure 11: Object search example while examining local mapping

York Times in gothic font, (b) and (c) are two keyframes in the database with frame IDs 24 and
46 respectively. Image 24 and the query image share exactly the same object – ”The New York
Times”. And Image 46 and the query image share similar objects, such as text with the same
gothic font. The top two ranked object searching results without examining local mapping are
shown in (d) and (e), where Image 46 is ranked first and Image 24 is ranked second. This result
is encouraging because the scores of Image 46 and Image 24 are higher than those of other frames
in the database, so we are successfully capturing one important feature of the object - gothic font.
On the other hand, the result is not perfect because Image 46 gets higher score than Image 24,
while the opposite should be true. Fig. 11 shows the top 2-ranked object searching results after
examining local mapping in (a) and (b). Here Image 24 is ranked first and Image 46 is ranked
second. And Image 24 gets a much higher score than Image 46. This result better reflects our
intuition. And the location and size of the detected object region in Fig. 11 (a) are much better
than for Fig. 10 (e).

As for the detailed algorithm, for a result image, suppose the set of matched keypoints in the
query image is S, and that in the result image it is S ′. For each matching pair of keypoints (K,
K ′), with K in S and K ′ in S ′, suppose their scales are σ and σ’ respectively. We generate adaptive
sizes of neighborhoods (noted as N and N ′) around K and K ′ respectively in their images.

N = {(xi, yi)|1 ≤ i ≤ n}
N ′ = {(x′

i, y
′
i)|1 ≤ i ≤ n′}

n′
n

= σ′
σ

(7)

where (xi, yi) are the closest n keypoints to K in S in 2D Euclidean distance, and (x′
i, y

′
i) are the

closest n’ keypoints to K ′ in S ′ in 2D Euclidean distance. Min{n, n′} is an adjustable system
parameter for our system. For our current system, Min{n, n′}=5. That is, if σ < σ’, n=5, n′

is computed by (3), otherwise n′=5, n is computed by (7). If the number of matched pairs (K1,
K2), with K1 in N and K2 in N ’, exceeds a threshold, we conclude that there is a local mapping
between K and K’ and we keep them; otherwise we delete (K, K ′) from the matched keypoint
set. The threshold here is also an adjustable system parameter; currently it is 2.

7.2 Geometry consistency filter

After neighborhood consistency filtering, we have more accurate matched keypoint sets in each
result image. But there still exist some sets of matched points that do not satisfy geometry
consistency. Computing the homography by iteration is a computationally expensive approach.
Fortunately we can make use of the local scale and orientation features of keypoints to simplify
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the checking of geometry consistency. For each individually matched keypoint pair, K1 in query
image and K2 in result image, suppose (σ1,θ1) records the scale and orientation of K1, and (σ2,θ2)
records those of K2; we compute the scale change ratio σ and orientation change angle θ.

σ = σ2/σ1 (8)

θ = θ2 − θ1 (9)

These two parameters (σ,θ) are the scaling (zooming) parameter and rotation parameter for the
transformation from K1 to K2. If the two groups of keypoints really represent the same object,
they should conform to a single planar homography transformation (assuming their depth is small
compared to their distance to the camera), so the (σ,θ) set should be compact in the 2-dimensional
parameter space. Therefore, we filter out those individual keypoint pair matches that are sparsely
distributed in the two-dimensional parameter space (σ,θ). As for the detailed algorithm, we build
a 2D parameter vector (logσ,θ) and normalize it into (Nσ, Nθ) ∈[0,1]×[0,1] as described by (10)
and (11).

Nσ =

⎧⎪⎨
⎪⎩

0, . . . . . . if(σ < 1/5)
log σ+log 5

2 log 5
, if(1/5 < σ < 5)

1, . . . . . . if(σ > 5)

(10)

Nθ =
θ + π

2π
, whereθ ∈ [−π, π] (11)

For a parameter point (Nσ, Nθ), we compute the local density of parameter points around it
in the parameter plane as (12) and (13). If the density is lower than a threshold, we filter it out
from the matched keypoint set.

density(Nσ, Nθ) = e
− 1

m

m∑
i=1

D((Nσ ,Nθ),(N i
σ ,N i

θ
))

(12)

D((Nσ, Nθ), (N
i
σ, N

i
θ)) =

√
(N i

σ − Nσ)2 + min{(N i
θ − Nθ)2, (N i

θ − Nθ ± 1)2} (13)

in which D(·,·) is a distance function in the (Nσ, Nθ) parameter plane. Here (N1
σ , N1

θ ),. . . ,(Nm
σ , Nm

θ )
are the closest m parameter points to (Nσ, Nθ) in S with the distance function D(·,·), with m as
an adjustable system parameter. In our current system, m=5. The special distance function in
(13) is designed such that accounts for the fact that [-π,π] range is circular. (In normalized range,
1 represents 2π).

Fig. 12 shows such an example. In Fig. 12, (a) is the query image with query object as the
word “YES”; (b) and (c) are two tied object-searching results without geometry consistency filter.
They both have five matched keypoints. But they present different patterns in the 2D parameter
space (Nσ, Nθ) as (d). With a geometry consistency filter, result 2 will have higher rank than
result 1, because parameters of matched keypoints in result 2 are much more compact in the 2D
parameter space than those in result 1.

7.3 Ranking

After neighborhood consistency filtering and geometry consistency filtering, the remaining groups
of matched keypoints in the result frames are considered to be really matched objects. At this
stage we again adopt a very simple way to rank frames by the number of matched keypoints that
survived these filtering steps. We deliver this ranked list as the object searching result.
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(a) Query image (b) Result 1 (c) Result 2
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Figure 12: Object search example for criteria with geometry consistency filter

8 Appendix 2

For object searching in videos, we propose a framework for shot boundary detection and keyframe
extraction. It handles detection of cuts, dissolves and fades. Generally, it computes pixel-to-
neighbor image differences in the videos. The cut detection applies the so-called second-max
ratio criterion in a sequential image buffer. The dissolve detection is based on a skipping image
difference and linearity error in a sequential image buffer. We also filter out the effects of camera
flash. For each detected shot, we extract the middle frame as its representative image. Once
keyframes are extracted, object searching in videos is equivalent to object searching in the database
of keyframe images.

8.1 Introduction

Shot boundary detection is an essential elementary component of video analysis. There exist a
lot of different shot boundary detection methods in the literature. In this appendix, we explain
the methods we use in our video research. It is designed in a straightforward way from the
pixel-to-neighbor image differences in video sequences.

Generally, there are three kinds of shot boundaries: cut, dissolve and wipe. A cut is an abrupt
transition between shots which is naturally formed by the video capturing process. A dissolve is
a gradual transition between shots, which is an effect added by video editors where two adjacent
shots are partly overlapped, while the frame intensities of the first shot are decreased to zero and
the frame intensities of the second shot are increased from zero. In fade-in and fade-out, the
two shots are not overlapped but the variations of frame intensities in the two adjacent shots are
similar to those in a dissolve. Therefore we use the same detection method and complete it with a
post-processing step to account for the fact that the shots are not overlapped. A wipe is a digital
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video effect also generated by video editors that can have many different forms. In a wipe, one
new shot pushes away an old shot. In this appendix we only describe algorithms for cut detection,
dissolve and fade detection.

8.2 Cut Detection

8.2.1 Second-Max Ratio Criterion

The image difference between two adjacent frames can be a good cue for detecting cuts. But
motion within one shot may be so large that it can also cause a noticeable image difference and
can be confused as a cut. To deal with motion, we use the second-max ratio criterion in the image
difference sequence to detect cuts. The second-max ratio, R(t), is defined as

R(t) =
d(t)

maxt′∈[t−w1,t+w1],t′ �=td(t′)
(14)

in which d(t) = ||I(t + 1) − I(t)|| is the pixel-to-neighbor image difference between two adjacent
frames and is described in the next section, w1 is the half-width of a sliding window, and max d(t′)
is the maximum among all image differences d(t) between adjacent frames in the sliding window,
excluding the frame at time = t considered at the numerator of the expression. Therefore, when
that frame is located at a maximum of d(t), the denominator selects the second maximum in the
sliding window, since the first one is excluded from consideration. If the second maximum is not
small, as is likely for high level of motion, then the ratio remains small. In case of a cut, there is
no large second maximum, so the ratio becomes large when frame t is just past the cut. Fig. 13
demonstrates the effectiveness of R(t). In this figure, there is a segment (around position c) with
large motion. A series of large responses in are shown in d(t). But in R(t), these are correctly
eliminated. All peaks in R(t) correspond to real cuts.

Figure 13: Effectiveness of second-max ratio criterion in detecting cuts. Note that the peaks due
to motion that appear in d(t) do not appear in R(t)

8.2.2 Image Difference Computation

There are many ways to compute the difference between two images. The following three are
popular:
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1. Pixel-to-pixel difference

2. Pixel-to-neighborhood difference

3. Histogram difference

We can think of the image difference as a distance between two vectors in a feature space. In
the first and second methods, the features are in the pixel space, with the color of each pixel as
one component of each feature. In the third method the features are in histogram space, with
each histogram bin a component of each feature. The first method is not robust to motion in
videos. The second method is an advanced version of the first method with a degree of motion
compensation. The third method can be computed by the Euclidean distance or any other defined
histogram distance in the histogram space. One of the drawbacks of the third method is that it
totally discards the spatial distribution of the images. Our experiments support our analysis that
the second method, pixel-to-neighborhood difference, is the best for evaluating image difference.
In our implementation we compute the pixel-to-neighborhood difference as

d(t) = ||I(t + 1) − I(t)||
= c

∑
i,j

(mink∈[i−w2,i+w2],l∈[j−w2,j+w2](
∑

m∈R,G,B

|Ik,l(t + 1)[m] − Ii,j(t)[m]|))

(15)

in which c is a scalar constant, w2 is the semi-width of the motion compensation searching window,
Ii,j(t)[m] is the channel value corresponding to m for the pixel position (i, j) of the frame image
I(t), with m ∈ R, G, B.

8.3 Dissolve Detection

In dissolve detection, we cannot use the image difference between two adjacent frames, because
it is small during the dissolve. But there will be a large image difference between two frames
if we skip an interval (such as a 25 frame interval). This skipping image difference can be used
as a cue to dissolve detection. But it is not a unique criterion for finding a dissolve. It is very
common that a peak of the skipping image difference in a sequence is not a dissolve (it can be a
cut, a wipe, a shot with large motion, or the combinations of these events). Therefore we need
to add other criteria for reliable dissolve detection. Another criterion we can use is the degree of
linearity of a sequence of frames. This is because, in the mechanism of dissolve effect generation,
most video editing processors use a linear combination of the signal before the dissolve transition
(noted as signal A) and the signal after the transition (noted as signal B). Thus in this model
the dissolve is a simultaneous fade-out of the signal A and fade-in of signal B. This implies that,
during the dissolve transition, images change linearly. Hence the degree of linearity can be selected
as another criterion to dissolve detection using its generative properties. Technically, it can be
evaluated from the normalized linear error within a sequence of frames. We propose a method for
dissolve detection which combines the above two criteria. Suppose we currently have a sequence of
w images which is a segment in the video sequence starting with I(t) and ending with I(t+w−1).
We define the current skipping image difference value as
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D(t) = ||I(t + w − 1) − I(t)||
= c

∑
i,j

(mink∈[i−w2,i+w2],l∈[j−w2,j+w2](
∑

m∈R,G,B

|Ik,l(t + w − 1)[m] − Ii,j(t)[m]|))

(16)

We define the current normalized linear error along this part of video as

LE(t) =

w−1∑
i=0

||I(t + 1) − ((1 − i
w−1

)I(t) + i
w−1

I(t + w − 1))||
||I(t + w − 1) − I(t)|| (17)

We detect a dissolve by the simultaneous presence of a peak of D(t) and a valley of LE(t). Fig.
14 shows an example of detected dissolves from a news video. Here we have four dissolves that
all satisfy our dissolve model. Fig. 14 also illustrates that we can easily estimate the start frame
number and end frame number of a dissolve transition.

Figure 14: Four dissolves with simultaneous peak of D(t) (darker red curve) and valley of LE(t)
(lighter green curve)

In ( 17) , we use the linearity assumption in RGB color space. One concern could be that in
analog television and in MPEG encoding, other color spaces are used. In which color space is
the dissolve signal linear? In fact, these three color-spaces are equivalent in linearity, because
there exists a linear transform between each pair of the three color-spaces. We also did some
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experiments to show this equivalence. For example, Fig. 15 shows the LE(t) curves for RGB
color space and YUV color space and their shapes are similar. In our implementation, we compute
the linearity errors in the RGB color space.

Figure 15: LE(t) in RGB color space (left picture) and YUV color space (right picture)

8.4 Elimination of Flash

There may be a lot of camera flash in videos, especially in news videos. A high-intensity light of
very short duration is produced. Flash will cause a false alarm for cut detection, because it will
increase the global brightness of one or more frames dramatically. Our method to eliminate false
alarms caused by flash from candidate cuts uses the following two facts: (1) the duration of flash
is very short, generally only one or two frames, (2) the images before a flash are similar to the
images after the flash, if they are in the same shot. Following the method described above, we can
get candidate cuts by computing R(t). These candidate cuts will be filtered by our post-processing
module to eliminate false alarms caused by flash. For a candidate cut position, noted as t, we
examine the following four values: ||I(t + 1)− I(t− 2)||, ||I(t + 1)− I(t− 1)||, ||I(t + 2)− I(t)||,
||I(t + 3)− I(t)||. If any of these four values is less than a threshold, this candidate is considered
to be a false alarm caused by flash, and filtered out from candidate cuts. This algorithm performs
quite well in experiments, and filters out most of the false alarms caused by flash. Also notice
that, in the special cases when the flashlight happens to be at the real cut boundary position, our
algorithm also works. It will not filter out the cut because the images before the cut and those
after the cut have large differences.

8.5 Merging Adjacent Fade-Out and Fade-In

Fade-out and fade-in are very common in videos. Fade-out is a dissolve from an image (noted as
image A) to a black frame, while fade-in is a dissolve from a black frame to an image (noted as
image B). In most cases, a fade-out will be followed by a fade-in. In the framework introduced
above, we will get two dissolve transitions in this case. One is the preceding fade-out, and the other
is the subsequent fade-in. But this is not a reasonable output. In the shot boundary detection
output, we should deliver only one dissolve from image A to image B. Therefore we have a post-
processing module to merge adjacent fade-out and fade-in into one dissolve transition. In this
post-processing module, for a candidate dissolve transition, we analyze the ratio of the number
of black frames during the transition divided by the total number of frames of the transition. If
this ratio is over 0.5, we consider the transition to be a fade-in or fade-out. We merge two such
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Table 4: Experimental Results

Run-id Recall Precision Recall Precision Recall Precision F-recall F-precision
for all for all for cut for cut for dissolve for dissolve for dissolve for dissolve

D0 0.802 0.847 0.900 0.877 0.595 0.765 0.567 0.792
D1 0.816 0.833 0.900 0.880 0.639 0.719 0.536 0.795
D2 0.809 0.842 0.900 0.877 0.617 0.750 0.568 0.795
D3 0.846 0.693 0.923 0.733 0.685 0.599 0.554 0.741
D4 0.731 0.908 0.864 0.921 0.450 0.859 0.656 0.787

close detected fade-in / fade-out transition components to one new dissolve transition. In our
implementation, a frame is declared to be a black frame if at least 90% or all the pixels are such
that R < 25, G < 25 and B < 25.

8.6 Implementation

In our implementation, we combined our algorithms with an MPEG1 decoder. In the decoding,
we keep a buffer of 25 sequential frames. It is a cyclic pointer array. Each pointer in the array is
pointing to an image structure. Every time a new frame is decoded, the frame buffer is updated
correspondingly and the features d(t), R(t), D(t) and LE(t) are computed based on the current
frame buffer. The update rule is that the newly decoded frame comes in the buffer and pushes
out the pointer for the oldest frame. The array is called cyclic because if the last decoded frame
is replaced at the end of the array, the current newly decoded frame will be replaced at the
start position of the array. This array is very convenient for memory management and the only
overhead is a pointer pointing to the currently processed position in the buffer.

8.7 Experimental Results

We submitted five runs to TRECVID 2004. Our run IDs are D0, D1, . . . , D4. Generally, they
are obtained by the same algorithms for feature extraction and shot boundary detection decision.
The difference between the five runs we submitted is with the different values of parameters in
our algorithms, including the w, w1, w2 parameters introduced above, the thresholds for R(t), and
the thresholds for finding the peaks of D(t) and valleys of LE(t). The results are shown in Table
4. They show the tradeoff between precision and recall. F-recall and F-precision in Table 4 are
frame-based recall and frame-based precision respectively.

As a more thorough analysis, we find that 29% of all missed gradual transitions are caused
by wipes. Wipes are difficult to detect effectively in videos because they are of various types
and the pixel-to-neightbor image differences have different properties for different styles of wipes.
We also find that 25% of all missed cut transitions are caused by extremely short dissolves. In
TRECVID 2004 data, there are a lot of extremely short dissolves involving only three frames.
These transitions are detected as dissolves in our submission, but in the TRECVID ground truth,
they are counted as cuts.
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8.8 Future Work

Papers submitted by other participants propose different methods for doing shot boundary de-
tection. Tsinghua University [26], RMIT University [27], and FX Palo Alto Lab [28] obtained
the best results. Tsinghua University considers motion information in shot boundary detection.
RMIT University proposes an impressive PrePostRatio to detect gradual transitions. FX Palo
Alto Lab views shot boundary detection as a general supervised classification problem rather than
an ad-hoc peak detection. All these ideas are illuminating. Combining them to our work would
be helpful. Moreover, our own methods can still be improved. For example, in the current im-
plementation, the width of the sliding window is fixed at 25 frames. An adaptive sliding window
width may perform better.
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